Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731963

RESUMO

Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 µM) and CaV3.3 (IC50 = 0.49 µM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.


Assuntos
Canais de Cálcio Tipo T , Modelos Animais de Doenças , Hiperalgesia , Dor Pós-Operatória , Venenos de Escorpião , Animais , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/química , Camundongos , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/metabolismo , Cálcio/metabolismo , Masculino , Humanos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/química
2.
J Pept Sci ; : e3600, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623834

RESUMO

Agricultural crops are targeted by various pathogens (fungi, bacteria, and viruses) and pests (herbivorous arthropods). Antimicrobial and insecticidal peptides are increasingly recognized as eco-friendly tools for crop protection due to their low propensity for resistance development and the fact that they are fully biodegradable. However, historical challenges have hindered their development, including poor stability, limited availability, reproducibility issues, high production costs, and unwanted toxicity. Toxicity is a primary concern because crop-protective peptides interact with various organisms of environmental and economic significance. This review focuses on the potential of genetically encoded peptide libraries like the use of two-hybrid-based methods for antimicrobial peptides identification and insecticidal spider venom peptides as two main approaches for targeting plant pathogens and pests. We discuss some key findings and challenges regarding the practical application of each strategy. We conclude that genetically encoded peptide library- and spider venom-derived crop protective peptides offer a sustainable and environmentally responsible approach for addressing modern crop protection needs in the agricultural sector.

3.
Toxicon ; 238: 107588, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147939

RESUMO

Pest insects pose a heavy burden on global agricultural industries with small molecule insecticides being predominantly used for their control. Unwanted side effects and resistance development plagues most small molecule insecticides such as the neonicotinoids, which have been reported to be harmful to honeybees. Bioinsecticides like Bacillus thuringiensis (Bt) toxins can be used as environmentally-friendly alternatives. Arachnid venoms comprise another promising source of bioinsecticides, containing a multitude of selective and potent insecticidal toxins. Unfortunately, no standardised insect models are currently available to assess the suitability of insecticidal agents under laboratory conditions. Thus, we aimed to develop a laboratory model that closely mimics field conditions by employing a leaf disk assay (LDA) for oral application of insecticidal agents in a bioassay tray format. Neonate larvae of the cotton bollworm (Helicoverpa armigera) were fed with soybean (Glycine max) leaves that were treated with different insecticidal agents. We observed dose-dependent insecticidal effects for Bt toxin and the neonicotinoid insecticide imidacloprid, with imidacloprid exhibiting a faster response. Furthermore, we identified several insecticidal arachnid venoms that were active when co-applied with sub-lethal doses of Bt toxin. We propose the H. armigera LDA as a suitable tool for assessing the insecticidal effects of insecticidal agents against lepidopterans.


Assuntos
Venenos de Artrópodes , Bacillus thuringiensis , Inseticidas , Mariposas , Neonicotinoides , Nitrocompostos , Toxinas Biológicas , Humanos , Recém-Nascido , Animais , Inseticidas/toxicidade , Glycine max , Helicoverpa armigera , Toxinas de Bacillus thuringiensis/farmacologia , Larva , Insetos , Toxinas Biológicas/farmacologia , Venenos de Artrópodes/farmacologia , Bioensaio , Folhas de Planta , Proteínas de Bactérias/farmacologia , Proteínas Hemolisinas/toxicidade , Endotoxinas , Controle Biológico de Vetores , Resistência a Inseticidas
4.
Toxins (Basel) ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37505687

RESUMO

Effective control of diseases transmitted by Aedes aegypti is primarily achieved through vector control by chemical insecticides. However, the emergence of insecticide resistance in A. aegypti undermines current control efforts. Arachnid venoms are rich in toxins with activity against dipteran insects and we therefore employed a panel of 41 spider and 9 scorpion venoms to screen for mosquitocidal toxins. Using an assay-guided fractionation approach, we isolated two peptides from the venom of the tarantula Lasiodora klugi with activity against adult A. aegypti. The isolated peptides were named U-TRTX-Lk1a and U-TRTX-Lk2a and comprised 41 and 49 residues with monoisotopic masses of 4687.02 Da and 5718.88 Da, respectively. U-TRTX-Lk1a exhibited an LD50 of 38.3 pmol/g when injected into A. aegypti and its modeled structure conformed to the inhibitor cystine knot motif. U-TRTX-Lk2a has an LD50 of 45.4 pmol/g against adult A. aegypti and its predicted structure conforms to the disulfide-directed ß-hairpin motif. These spider-venom peptides represent potential leads for the development of novel control agents for A. aegypti.


Assuntos
Venenos de Aranha , Peçonhas , Animais , Peçonhas/farmacologia , Brasil , Mosquitos Vetores , Peptídeos/farmacologia , Insetos , Venenos de Aranha/toxicidade , Venenos de Aranha/química
5.
Biology (Basel) ; 12(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37237505

RESUMO

Predatory stink bugs capture prey by injecting salivary venom from their venom glands using specialized stylets. Understanding venom function has been impeded by a scarcity of knowledge of their venom composition. We therefore examined the proteinaceous components of the salivary venom of the predatory stink bug Arma custos (Fabricius, 1794) (Hemiptera: Pentatomidae). We used gland extracts and venoms from fifth-instar nymphs or adult females to perform shotgun proteomics combined with venom gland transcriptomics. We found that the venom of A. custos comprised a complex suite of over a hundred individual proteins, including oxidoreductases, transferases, hydrolases, ligases, protease inhibitors, and recognition, transport and binding proteins. Besides the uncharacterized proteins, hydrolases such as venom serine proteases, cathepsins, phospholipase A2, phosphatases, nucleases, alpha-amylases, and chitinases constitute the most abundant protein families. However, salivary proteins shared by and unique to other predatory heteropterans were not detected in the A. custos venom. Injection of the proteinaceous (>3 kDa) venom fraction of A. custos gland extracts or venom into its prey, the larvae of the oriental armyworm Mythimna separata (Walker, 1865), revealed insecticidal activity against lepidopterans. Our data expand the knowledge of heteropteran salivary proteins and suggest predatory asopine bugs as a novel source for bioinsecticides.

6.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361863

RESUMO

Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.


Assuntos
Venenos de Aranha , Aranhas , Animais , Humanos , Venenos de Aranha/toxicidade , Venenos de Aranha/química , Árvores , Austrália , Peptídeos
7.
Biomedicines ; 10(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35625803

RESUMO

Inhibition of T-type calcium channels (CaV3) prevents development of diseases related to cardiovascular and nerve systems. Further, knockout animal studies have revealed that some diseases are mediated by specific subtypes of CaV3. However, subtype-specific CaV3 inhibitors for therapeutic purposes or for studying the physiological roles of CaV3 subtypes are missing. To bridge this gap, we employed our spider venom library and uncovered that Avicularia spec. ("Amazonas Purple", Peru) tarantula venom inhibited specific T-type CaV channel subtypes. By using chromatographic and mass-spectrometric techniques, we isolated and sequenced the active toxin ω-Avsp1a, a C-terminally amidated 36 residue peptide with a molecular weight of 4224.91 Da, which comprised the major peak in the venom. Both native (4.1 µM) and synthetic ω-Avsp1a (10 µM) inhibited 90% of CaV3.1 and CaV3.3, but only 25% of CaV3.2 currents. In order to investigate the toxin binding site, we generated a range of chimeric channels from the less sensitive CaV3.2 and more sensitive CaV3.3. Our results suggest that domain-1 of CaV3.3 is important for the inhibitory effect of ω-Avsp1a on T-type calcium channels. Further studies revealed that a leucine of T-type calcium channels is crucial for the inhibitory effect of ω-Avsp1a.

8.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074873

RESUMO

The King Baboon spider, Pelinobius muticus, is a burrowing African tarantula. Its impressive size and appealing coloration are tempered by reports describing severe localized pain, swelling, itchiness, and muscle cramping after accidental envenomation. Hyperalgesia is the most prominent symptom after bites from P. muticus, but the molecular basis by which the venom induces pain is unknown. Proteotranscriptomic analysis of P. muticus venom uncovered a cysteine-rich peptide, δ/κ-theraphotoxin-Pm1a (δ/κ-TRTX-Pm1a), that elicited nocifensive behavior when injected into mice. In small dorsal root ganglion neurons, synthetic δ/κ-TRTX-Pm1a (sPm1a) induced hyperexcitability by enhancing tetrodotoxin-resistant sodium currents, impairing repolarization and lowering the threshold of action potential firing, consistent with the severe pain associated with envenomation. The molecular mechanism of nociceptor sensitization by sPm1a involves multimodal actions over several ion channel targets, including NaV1.8, KV2.1, and tetrodotoxin-sensitive NaV channels. The promiscuous targeting of peptides like δ/κ-TRTX-Pm1a may be an evolutionary adaptation in pain-inducing defensive venoms.


Assuntos
Nociceptores/efeitos dos fármacos , Papio/metabolismo , Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Aranhas/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Canais Iônicos/metabolismo , Camundongos , Dor/tratamento farmacológico , Tetrodotoxina/farmacologia
9.
Nat Commun ; 13(1): 260, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017494

RESUMO

Advances in peptide and protein therapeutics increased the need for rapid and cost-effective polypeptide prototyping. While in vitro translation systems are well suited for fast and multiplexed polypeptide prototyping, they suffer from misfolding, aggregation and disulfide-bond scrambling of the translated products. Here we propose that efficient folding of in vitro produced disulfide-rich peptides and proteins can be achieved if performed in an aggregation-free and thermodynamically controlled folding environment. To this end, we modify an E. coli-based in vitro translation system to allow co-translational capture of translated products by affinity matrix. This process reduces protein aggregation and enables productive oxidative folding and recycling of misfolded states under thermodynamic control. In this study we show that the developed approach is likely to be generally applicable for prototyping of a wide variety of disulfide-constrained peptides, macrocyclic peptides with non-native bonds and antibody fragments in amounts sufficient for interaction analysis and biological activity assessment.


Assuntos
Sistema Livre de Células/efeitos dos fármacos , Medicamentos Genéricos/química , Medicamentos Genéricos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Animais , Anticorpos , Análise Custo-Benefício , Interpretação Estatística de Dados , Dissulfetos , Drosophila melanogaster , Escherichia coli , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Leishmania , Peptídeos/genética , Agregados Proteicos , Domínios Proteicos , RNA Ribossômico 16S , Biologia Sintética , Termodinâmica
10.
Biol Rev Camb Philos Soc ; 97(1): 163-178, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34453398

RESUMO

Spiders are diverse, predatory arthropods that have inhabited Earth for around 400 million years. They are well known for their complex venom systems that are used to overpower their prey. Spider venoms contain many proteins and peptides with highly specific and potent activities suitable for biomedical or agrochemical applications, but the key role of venoms as an evolutionary innovation is often overlooked, even though this has enabled spiders to emerge as one of the most successful animal lineages. In this review, we discuss these neglected biological aspects of spider venoms. We focus on the morphology of spider venom systems, their major components, biochemical and chemical plasticity, as well as ecological and evolutionary trends. We argue that the effectiveness of spider venoms is due to their unprecedented complexity, with diverse components working synergistically to increase the overall potency. The analysis of spider venoms is difficult to standardize because they are dynamic systems, fine-tuned and modified by factors such as sex, life-history stage and biological role. Finally, we summarize the mechanisms that drive spider venom evolution and highlight the need for genome-based studies to reconstruct the evolutionary history and physiological networks of spider venom compounds with more certainty.


Assuntos
Venenos de Aranha , Aranhas , Animais , Biologia , Venenos de Aranha/química , Aranhas/genética , Peçonhas
11.
ACS Pharmacol Transl Sci ; 4(4): 1362-1378, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423271

RESUMO

The human nociceptor-specific voltage-gated sodium channel 1.7 (hNaV1.7) is critical for sensing various types of somatic pain, but it appears not to play a primary role in acute visceral pain. However, its role in chronic visceral pain remains to be determined. We used assay-guided fractionation to isolate a novel hNaV1.7 inhibitor, Tsp1a, from tarantula venom. Tsp1a is 28-residue peptide that potently inhibits hNaV1.7 (IC50 = 10 nM), with greater than 100-fold selectivity over hNaV1.3-hNaV1.6, 45-fold selectivity over hNaV1.1, and 24-fold selectivity over hNaV1.2. Tsp1a is a gating modifier that inhibits NaV1.7 by inducing a hyperpolarizing shift in the voltage-dependence of channel inactivation and slowing recovery from fast inactivation. NMR studies revealed that Tsp1a adopts a classical knottin fold, and like many knottin peptides, it is exceptionally stable in human serum. Remarkably, intracolonic administration of Tsp1a completely reversed chronic visceral hypersensitivity in a mouse model of irritable bowel syndrome. The ability of Tsp1a to reduce visceral hypersensitivity in a model of irritable bowel syndrome suggests that pharmacological inhibition of hNaV1.7 at peripheral sensory nerve endings might be a viable approach for eliciting analgesia in patients suffering from chronic visceral pain.

12.
Biochem Pharmacol ; 192: 114693, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302796

RESUMO

In the face of increasing drug resistance, the development of new anthelmintics is critical for controlling nematodes that parasitise livestock. Although hymenopteran venom toxins have attracted attention for applications in agriculture and medicine, few studies have explored their potential as anthelmintics. Here we assessed hymenopteran venoms as a possible source of new anthelmintic compounds by screening a panel of ten hymenopteran venoms against Haemonchus contortus, a major pathogenic nematode of ruminants. Using bioassay-guided fractionation coupled with liquid chromatography-tandem mass spectrometry, we identified four novel anthelmintic peptides (ponericins) from the venom of the neotropical ant Neoponera commutata and the previously described ponericin M-PONTX-Na1b from Neoponera apicalis venom. These peptides inhibit H. contortus development with IC50 values of 2.8-5.6 µM. Circular dichroism spectropolarimetry indicated that the ponericins are unstructured in aqueous solution but adopt α-helical conformations in lipid mimetic environments. We show that the ponericins induce non-specific membrane perturbation, which confers broad-spectrum antimicrobial, insecticidal, cytotoxic, hemolytic, and algogenic activities, with activity across all assays typically correlated. We also show for the first time that ponericins induce spontaneous pain behaviour when injected in mice. We propose that the broad-spectrum activity of the ponericins enables them to play both a predatory and defensive role in neoponeran ants, consistent with their high abundance in venom. This study reveals a broader functionality for ponericins than previously assumed, and highlights both the opportunities and challenges in pursuing ant venom peptides as potential therapeutics.


Assuntos
Venenos de Formiga/farmacologia , Anti-Helmínticos/farmacologia , Anti-Infecciosos/farmacologia , Hemolíticos/farmacologia , Inseticidas/farmacologia , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Venenos de Formiga/genética , Venenos de Formiga/isolamento & purificação , Anti-Helmínticos/isolamento & purificação , Anti-Infecciosos/isolamento & purificação , Formigas , Brugia Malayi/efeitos dos fármacos , Brugia Malayi/fisiologia , Calliphoridae , Relação Dose-Resposta a Droga , Células HEK293 , Haemonchus/efeitos dos fármacos , Haemonchus/fisiologia , Hemolíticos/isolamento & purificação , Humanos , Inseticidas/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , Peptídeos/isolamento & purificação , Ovinos
13.
Biomedicines ; 9(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921205

RESUMO

An estimated 15% of animals are venomous, with representatives spread across the majority of animal lineages. Animals use venoms for various purposes, such as prey capture and predator deterrence. Humans have always been fascinated by venomous animals in a Janus-faced way. On the one hand, humans have a deeply rooted fear of venomous animals. This is boosted by their largely negative image in public media and the fact that snakes alone cause an annual global death toll in the hundreds of thousands, with even more people being left disabled or disfigured. Consequently, snake envenomation has recently been reclassified by the World Health Organization as a neglected tropical disease. On the other hand, there has been a growth in recent decades in the global scene of enthusiasts keeping venomous snakes, spiders, scorpions, and centipedes in captivity as pets. Recent scientific research has focussed on utilising animal venoms and toxins for the benefit of humanity in the form of molecular research tools, novel diagnostics and therapeutics, biopesticides, or anti-parasitic treatments. Continued research into developing efficient and safe antivenoms and promising discoveries of beneficial effects of animal toxins is further tipping the scales in favour of the "cure" rather than the "curse" prospect of venoms.

14.
Toxicon ; 192: 74-77, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33493497

RESUMO

Despite the popularity of theraphosids, detailed reports on bite symptoms are still limited to few geographic regions and subfamilies. We therefore examined 363 published bite reports and noticed muscles cramps caused by theraphosids from nearly all continents and subfamilies. Symptoms are mostly locally restricted and mild, but 12.7% of victims experience pronounced cramps with highest incidence rates by Poecilotheriinae, Harpactirinae and Stromatopelminae subfamilies. We discuss how variations in venom quantity correlate with muscle cramp prevalence.


Assuntos
Picada de Aranha , Venenos de Aranha , Aranhas , Animais , Cãibra Muscular/induzido quimicamente , Espasmo/induzido quimicamente
15.
Front Pharmacol ; 12: 789570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095499

RESUMO

Venoms from cone snails and arachnids are a rich source of peptide modulators of voltage-gated sodium (NaV) channels, however relatively few venom-derived peptides with activity at the mammalian NaV1.8 subtype have been isolated. Here, we describe the discovery and functional characterisation of ß-theraphotoxin-Eo1a, a peptide from the venom of the Tanzanian black and olive baboon tarantula Encyocratella olivacea that modulates NaV1.8. Eo1a is a 37-residue peptide that increases NaV1.8 peak current (EC50 894 ± 146 nM) and causes a large hyperpolarising shift in both the voltage-dependence of activation (ΔV50-20.5 ± 1.2 mV) and steady-state fast inactivation (ΔV50-15.5 ± 1.8 mV). At a concentration of 10 µM, Eo1a has varying effects on the peak current and channel gating of NaV1.1-NaV1.7, although its activity is most pronounced at NaV1.8. Investigations into the binding site of Eo1a using NaV1.7/NaV1.8 chimeras revealed a critical contribution of the DII S3-S4 extracellular loop of NaV1.8 to toxin activity. Results from this work may form the basis for future studies that lead to the rational design of spider venom-derived peptides with improved potency and selectivity at NaV1.8.

16.
Pain ; 162(2): 569-581, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826759

RESUMO

ABSTRACT: Chronic pain is a serious debilitating condition that affects ∼20% of the world's population. Currently available drugs fail to produce effective pain relief in many patients and have dose-limiting side effects. Several voltage-gated sodium (NaV) and calcium (CaV) channels are implicated in the etiology of chronic pain, particularly NaV1.1, NaV1.3, NaV1.7-NaV1.9, CaV2.2, and CaV3.2. Numerous NaV and CaV modulators have been described, but with few exceptions, they display poor potency and/or selectivity for pain-related channel subtypes. Here, we report the discovery and characterization of 2 novel tarantula-venom peptides (Tap1a and Tap2a) isolated from Theraphosa apophysis venom that modulate the activity of both NaV and CaV3 channels. Tap1a and Tap2a inhibited on-target NaV and CaV3 channels at nanomolar to micromolar concentrations and displayed moderate off-target selectivity for NaV1.6 and weak affinity for NaV1.4 and NaV1.5. The most potent inhibitor, Tap1a, nearly ablated neuronal mechanosensitivity in afferent fibers innervating the colon and the bladder, with in vivo intracolonic administration reversing colonic mechanical hypersensitivity in a mouse model of irritable bowel syndrome. These findings suggest that targeting a specific combination of NaV and CaV3 subtypes provides a novel route for treatment of chronic visceral pain.


Assuntos
Dor Crônica , Síndrome do Intestino Irritável , Preparações Farmacêuticas , Venenos de Aranha , Dor Visceral , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Canais de Cálcio , Dor Crônica/tratamento farmacológico , Humanos , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/tratamento farmacológico , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Peptídeos/farmacologia , Sódio , Venenos de Aranha/farmacologia , Venenos de Aranha/uso terapêutico , Dor Visceral/tratamento farmacológico
17.
Toxicon ; 190: 65-72, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33307110

RESUMO

With a global estimate of tens of thousands of arachnid enthusiasts, spiders and scorpions are gaining increasing popularity as pets in industrialised countries in Europe, Northern America and Asia. As most spiders and all scorpions are venomous and due to their mostly negative image in the public media, several governments are already considering introducing legislation to regulate the domestic care of potentially dangerous captive animals. We aimed to investigate the circumstances and effects of exposure to arachnids kept in captivity. Thus, we collected and analysed data from 354 self-reported bites and stings attributed to pet arachnids. Our data revealed that on average there were less than 20 recorded envenomations per year with ~90% preventable by due care. We also categorized the severity of the resulting symptoms and found that the vast majority of symptoms were either local (60.7%) or minor (32.8%), 5.4% were asymptomatic, only 1.1% were severe and no fatalities were recorded. Based on our database of bite and sting reports, we performed a risk assessment for arachnid pet ownership and concluded that, with the proper care, arachnids can be safely kept as pets and pose a lower risk than many other recreational activities.


Assuntos
Venenos de Artrópodes , Animais de Estimação , Picadas de Escorpião/epidemiologia , Picada de Aranha/epidemiologia , Animais , Humanos
18.
ACS Pharmacol Transl Sci ; 3(6): 1211-1224, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33344898

RESUMO

Ants use venom for predation, defense, and communication; however, the molecular diversity, function, and potential applications of ant venom remains understudied compared to other venomous lineages such as arachnids, snakes and cone snails. In this work, we used a multidisciplinary approach that encompassed field work, proteomics, sequencing, chemical synthesis, structural analysis, molecular modeling, stability studies, and in vitro and in vivo bioassays to investigate the molecular diversity of the venom of the Amazonian Pseudomyrmex penetrator ants. We isolated a potent insecticidal heterodimeric peptide Δ-pseudomyrmecitoxin-Pp1a (Δ-PSDTX-Pp1a) composed of a 27-residue long A-chain and a 33-residue long B-chain cross-linked by two disulfide bonds in an antiparallel orientation. We chemically synthesized Δ-PSDTX-Pp1a, its corresponding parallel AA and BB homodimers, and its monomeric chains and demonstrated that Δ-PSDTX-Pp1a had the most potent insecticidal effects in blowfly assays (LD50 = 3 nmol/g). Molecular modeling and circular dichroism studies revealed strong α-helical features, indicating its cytotoxic effects could derive from cell membrane pore formation or disruption. The native heterodimer was substantially more stable against proteolytic degradation (t 1/2 = 13 h) than its homodimers or monomers (t 1/2 < 20 min), indicating an evolutionary advantage of the more complex structure. The proteomic analysis of Pseudomyrmex penetrator venom and in-depth characterization of Δ-PSDTX-Pp1a provide novel insights in the structural complexity of ant venom and further exemplifies how nature exploits disulfide-bond formation and dimerization to gain an evolutionary advantage via improved stability, a concept that is highly relevant for the design and development of peptide therapeutics, molecular probes, and bioinsecticides.

19.
Toxins (Basel) ; 12(11)2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114591

RESUMO

Venoms act with remarkable specificity upon a broad diversity of physiological targets. Venoms are composed of proteins, peptides, and small molecules, providing the foundation for the development of novel therapeutics. This study assessed the effect of venom from the red-bellied black snake (Pseudechis porphyriacus) on human primary leukocytes using bead-based flow cytometry, mixed lymphocyte reaction, and cell viability assays. We show that venom treatment had a significant immunosuppressive effect, inhibiting the secretion of interleukin (IL)-2 and tumor necrosis factor (TNF) from purified human T cells by 90% or greater following stimulation with mitogen (phorbol 12-myristate 13-acetate and ionomycin) or via cluster of differentiation (CD) receptors, CD3/CD28. In contrast, venom treatment did not inhibit TNF or IL-6 release from antigen-presenting cells stimulated with lipopolysaccharide. The reduced cytokine release from T cells was not associated with inhibition of T cell proliferation or reduction of cell viability, consistent with an anti-inflammatory mechanism unrelated to the cell cycle. Deconvolution of the venom using reverse-phase HPLC identified four fractions responsible for the observed immunosuppressive activity. These data suggest that compounds from P. porphyriacus venom may be potential drug leads for T cell-associated conditions such as graft versus host disease, rheumatoid arthritis, and inflammatory bowel disease.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Venenos Elapídicos/farmacologia , Imunossupressores/farmacologia , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Elapidae , Humanos , Lipopolissacarídeos/farmacologia
20.
Proc Natl Acad Sci U S A ; 117(40): 24920-24928, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958636

RESUMO

Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.


Assuntos
Evolução Molecular , Neurotoxinas/genética , Poliaminas/química , Aranhas/genética , Sequência de Aminoácidos/genética , Animais , Austrália , Sequência Conservada/genética , Feminino , Humanos , Masculino , Camundongos , Neurotoxinas/química , Neurotoxinas/metabolismo , Peptídeos/genética , Filogenia , Poliaminas/metabolismo , Comportamento Sexual Animal/fisiologia , Venenos de Aranha/genética , Aranhas/patogenicidade , Transcriptoma/genética , Vertebrados/genética , Vertebrados/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA